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ABSTRACT 
 
 An extensive peel-test study was conducted to 
investigate the various factors that may affect the adhesion 
strength of photovoltaic module encapsulants, primarily 
ethylene-vinyl acetate (EVA), on glass substrates of various 
laminates based on a common configuration of 
glass/encapsulant/backfoil. The results show that "pure" or 
"absolute" adhesion strength of EVA-to-glass was very 
difficult to obtain because of tensile deformation of the soft, 
semi-elastic EVA layer upon pulling. A mechanically 
"strong enough" backing foil on the EVA was critical to 
achieving the "apparent" adhesion strength. Peel test method 
with a 90-degree-pull yielded similar results to a 180-degree-
pull. The 90-degree-pull method better revealed the four 
stages of delamination failure of the EVA/backfoil layers. 
The adhesion strength is affected by a number of factors, 
which include EVA type, formulation, backfoil type and 
manufacturing source, glass type, and surface priming 
treatment on the glass surface or on the backfoil. Effects of 
the glass-cleaning method and surface texture are not 
obvious. Direct priming treatments used in the work did not 
improve, or even worsened, the adhesion. Aging of EVA by 
storage over ~5 years reduced notably the adhesion strength. 
Lower adhesion strengths were observed for the blank 
(unformulated) EVA and non-EVA copolymers, such as 
poly(ethylene-co-methacrylate) (PEMA) or poly(ethylene-
co-butylacrylate) (PEBA). Their adhesion strengths 
increased if the copolymers were cross-linked. Transparent 
fluoropolymer superstrates such as TefzelTM and DureflexTM 
films used for thin-film PV modules showed low adhesion 
strengths to the EVA at a level of ~2 N/mm.  
 
1. Introduction 
 Adhesion strength of polymeric encapsulants such as 
EVA to the glass substrates on PV modules is an important 
factor that can affect critically the performance reliability 
and durability of modules exposed to weathering 
environments. Delamination of EVA from the glass 
superstrates on field-deployed crystalline-Si modules has 
been observed before [1]. Lately, largely reduced adhesion 
strength of EVA from glass plates was reported after being 
subjected to the damp-heat test in an environment test 
chamber under 85% relative humidity at 85oC [2,3]. In 
previous studies, we observed that moisture ingress and 
retention occurred in the glass/EVA/glass laminates, and that 
moisture condensation occurred in the glass/glass assembly 

with EVA around the edges only, when the samples were 
exposed in the dark to high-low temperature and relative 
humidity cycles in a weatherometer [4]. In the former 
laminates, the originally clear and transparent EVA layer 
would become white/turbid, which gradually disappeared 
over time when the laminates were placed in the air to dry. 
The milky white turbidity and its subsequent gradual 
disappearance were also observed on EVA/glass and glass/ 
EVA/glass laminates soaked in a 85oC water bath in later 
experiments [5]. The EVA layer on the EVA/glass 
laminates could be peeled off fairly easily when the 
laminates were still wet and hot, but was largely restored 
when dried. This adhesion recovery was also observed by 
another group [2]. There is a lack of systematic research to 
understand adhesion issues for the EVA used in PV 
modules, however. To address such adhesion reliability 
issues, we conducted experiments to understand and 
determine the factors that may significantly affect the 
adhesion strength of EVA/substrate measured by 
conventional peel-test methods, to quantify the water 
uptake and loss by EVA laminated with various substrates, 
and to examine the hydrolytic stability of various silanes on 
glass substrates. This paper focuses primarily on the 
adhesion strength study. 
 
2. Experimental 
2.1. Sample Preparations: Various glasses, EVA 
encapsulant formulations, and backing foils from different 
sources were used for the laminations in a custom-made, 
programmable, double-bag vacuum laminator. Non-EVA 
encapsulants were also included in the study. All the 
polymer films were either new or less than 6 months old. 
Sources of EVA and backfoils are not identified herein. 
Laminations were performed in either fast or regular-cure 
cycles, depending on the EVA formulation. The gel content 
was determined for the cured EVA. The samples were 
prepared by separate laminations for each set designated for 
a given specific test objective in order to allow for 
comparison. The glass plates were thoroughly cleaned by 
different methods, and primed if needed, 30 m to 1 h before 
use.  
2.2.  Peel Tests:  Peel tests were based on ASTM D903-98 
and measured by using an Instron tensile-test apparatus of 
Model 5500 fitted with Load Cell Model 2511-104 with a 
constant crosshead speed of 1 cm/min at ambient room 
temperatures. The samples were tested mostly with a 90-
degree pull on a custom-modified Parker-Daedal Model 
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4615 Linear Motion Slide; and 180-degree pull tests were 
also conducted on some samples for comparison.  
 
3.  Results and Discussion 
3.1.  The Need of A Backing Foil and Use of Apparent 
Adhesion Strength 
 When the 90-degree-pull test was performed on 
glass/EVA laminates without a backing foil, tensile 
deformation of the soft, semi-elastic EVA layer caused the 
film to "neck" or narrow quickly after the first ~1-2 mm peel 
from the glass surface, and showed a linear increase in 
strength as shown in Fig. 1. The reproducible results indicate 
that it is difficult, if not impossible, to derive a reliable 
"pure" or "absolute" EVA-to-glass  adhesion strength from 
the pull load-distance curve. When the pull tests were 
performed on glass/EVA/backfoil laminates, significant 
differences in the load-distance curve feature were obtained, 
as illustrated in Fig. 2 for a 90-degree pull and a 180-degree 
pull. The two methods yielded similarly a maximum of ~12 
± 0.4 N/mm for the two central strips on the 4" x 4" 
borosilicate/EVA/TPT laminate (TPT: TedlarTM/Polyester/ 
Tedlar trilayer). Although the 180-degree-pull curve tends to 
produce "cleaner" curves, close visual observations revealed 
four stages were involved in the process of pull-forced-
delamination failure, which are better revealed in the 90-
degree-pull.  
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Figure 1. Load-peel distance curve for a borosilicate/EVA 
laminate without a backing foil, showing the necking 
(narrowing) of the soft, semi-elastic EVA layer. 
 
The four-stage pattern can be generalized as below: 
1. An initial phase that includes a short distance EVA pull-

off (ca. 1~2 mm) from the glass surface, development of 
an EVA "flap," and lift-up or bending of the backfoil from 
EVA. 

2. A second phase that includes extending-then-breaking of 
the EVA flap and more lift-off of the backfoil from EVA. 

3. A third phase that involves the peel-off of backfoil from 
the EVA. 

4. A fourth phase that shows delamination of the EVA-sided 
Tedlar layer from the PT layers. 

 
These four phases or stages may not clearly show on each 
sample test. The second and third stages may be mixed, 

resulting in "unzipping" of the EVA/TPT from the glass 
and TPT from the EVA, as shown in Fig. 2. Occasionally, 
the EVA flap lengthened too much and had to be cut with a 
blade to complete the test. 
  Because of these factors, the peel tests can only 
produce an "apparent" adhesion strength as a consequence 
of the EVA-on-backfoil combination. The results reported 
herein, therefore, are referred to this apparent adhesion 
strength. Furthermore, the maximum adhesion strength was 
derived from the highest load point within the first 1 cm 
pull distance for most samples, and within 1~2 cm for a 
few others. Comparison of the results should be more 
relevant for a given specific set of samples that were 
prepared together in a given lamination run. 
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Figure 2.  Load-peel distance curves for a borosilicate/ 
15295P EVA/M-TPT laminate tested by a 90-degree-pull 
method, a 180-degree-pull method, and an "unzipping" of 
the EVA/TPT layers from the glass substrates upon 90-
degree-pull. 
 
3.2.  Factors that Affect the EVA-to-Glass Adhesion 
 The apparent adhesion strength of EVA to glass 
substrate was found to depend on several factors. The most 
important ones are the types of encapsulants and backing 
foils used and their manufacturing. For EVA, the effects 
arise from the vinyl acetate (VA) content of the EVA, 
chemical formulations of EVA, presence and type of 
adhesion promoter such as silane coupling agent, and 
extent of EVA cross-linking (i.e., gel content). These are 
also true for the non-EVA polymers such as PEBA and 
PEMA studied here. On the backing foils, it was found that 
the actual manufacturing conditions and method can have a 
profound effect even for an identical type of backfoil such 
as TPT (Tedlar/polyester/Tedlar) trilayer laminate. Effects 
of glass type (for 1/8" thickness), surface cleaning, and 
texture are not so obvious. Direct priming on the glass 
surface did not improve, sometimes even worsened, the 
EVA adhesion to the glass substrates.  
 
3.2.1  Effects of Encapsulant Type and Formulation 
 Table 1 shows the maximum apparent adhesion 
strength obtained for a number of glass/EVA (or non-
EVA)/TPT laminates using 90-degree-pull test. The EVA 
formulations typically contain a peroxide curing agent for 
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cross-linking, to enhance the mechanical strength of the 
EVA layer to fixate and support the crystalline-Si solar cell 
strings, and a silane-based coupling agent, to enhance the 
adhesion between the EVA and substrates including the 
glass plate and solar cells. Most EVA formulations use a 
Dow Corning Z-6030TM, gamma-methacryloxy-propyl-
trimethoxysilane. Details of the formulation are not readily 
available here for each of the commercial EVA products, 
however.  
 As seen in Table 1 for the fast-cure EVAs, 28%VA-
EVA (TW0312A, custom formulated and extruded at 
NREL) yielded higher adhesion strength (>10 N/mm) than 
those of 33%VA-EVA (6~8 N/mm). The results for 
33%VA-EVA are close to those reported elsewhere [2,3].  
However, if the 28%VA-EVA contains an anti-block agent 
(EVX240W, DuPont's Elvax 240W), substantial reduction 
resulted (3~4 N/mm). Extent of EVA cross-linking does not 
appear to make much difference. For the slow-cure EVAs, 
the 33%VA-EVA and 28%VA-EVA appear to be fairly 
similar in producing the adhesion strength within the 
experimental uncertainty (ca. ± ~1 N/mm). For slow-cure 
A9918P EVA aged 5 years in storage, the gel content 
decreased and the adhesion strength also decreased to 
3.4~4.2 N/mm.  Blank polymer films unformulated with any 
ingredients such as 33%VA Elvax 150 (DuPont), PEBA, and 
PEMA all show very low adhesion strength, apparently a 
consequence of a absence of a silane coupling agent and 
curing agent for cross-linking. After a fast-cure formulation 
with silane and curing agent, adhesion strength of PEMA 
increased substantially to ~8 N/mm. 
 
Table 1. Adhesion Strength for Various Encapsulant Formulations1 
in Borosilicate/EVA/M-TPT Laminates Measured with 90-Degree-
Pull 
 

Plate  EVA  Formulation  Ad. Strength    Gel 
Size Type       ID Test 1 Test 2   
 (in.x in.)  (N/mm)(N/mm)   (%)
                                       Fast Cure 
2 x 3 33%VA 15295P 8.07 6.02         77~89 
2 x 3 33%VA ZJ-FC 7.42 6.60 80 
2 x 3 33%VA? BP-FC 8.13 7.04 70
2 x 3 28%VA TW0312A 10.88 10.25 87 
2 x 3 28%VA EVX240W 3.39 4.33 70 
2 x 3 28%VA? HS SC-423 7.67 6.49 89 
2 x 3 Non-EVA PEMA 8.37 7.69 70 
                                       Slow Cure 
4 x 4 33%VA ZJ-SC 8.58 9.93 80  
4 x 4 33%VA A9918P4 4.21 3.42         74~79 
4 x 4 28%VA SC-0515C 6.78 8.21         77~83 
2 x 3 28%VA? HS SC-423 5.89 7.53 89 
                      Unformulated 
2 x 3 33%VA Elvax 150 4.92 4.98 0 
2 x 2 Non-EVA PEBA 1.79 1.64 0 
2 x 2 Non-EVA PEMA 2.84 2.29 0 

1 FC: Fast cure; SC: Slow cure. The EVA films are made by 
different sources with varying formulations.  
3 Percent VA in the HS EVA was not clear even from DSC 
analysis, but likely 25%~28%. Used in both fast and slow cure. 
4  Films stored in the dark for ~5 years. 
 
 

3.2.2.  Effects of Backing Foil Type and Source 
 The backing foils were found to have the greatest 
effect on adhesion strength, as shown in Fig. 3 and Table 2. 
The type, manufacturing source, and surface priming on the 
adhering side of the back foils all affect the adhesion 
strength between glass and EVA/backfoil and between 
EVA and the backfoil.  
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Figure 3.  Load-peel distance curves illustrating the effect 
of backfoil type on the adhesion test of borosilicate/ 
15295P/backfoil laminates using 90-degree-pull method. 
The backfoil was (a) I-TPT, (b) M-TAT (Tedlar/aluminum 
foil/Tedlar), and (c) I-TPAT (Tedlar/polyester/aluminum/ 
Tedlar) with one black pigmented, unprimed Tedlar side. 
 
Table 2.  Effects of Backing Foil Type and Manufacturing Source 
 

Glass  Plate  Backfoil Max. Ad. Strength 
Type Size Type Test 1 Test 2 
(1/8" thick) (in.x in.) (N/mm) (N/mm) 

AFG-KK 2 x 3 M- TPT 4.21 6.83 
AFG-KK 2 x 3 I-TPT1 10.51 10.83 
AFG-KK 2 x 3 M-TAT2 8.70 8.00 
AFG-KK 2 x 3 I-TPAT3 5.24 4.45 
Boro 2 x 3 M-TPE4 11.91 11.73 
Boro 2 x 3 Teijin 6429 9.24 10.82 

1  Vertical white strips left on EVA surface; glass plate broke on 
the second strip test. 
2  TAT/EVA strip broke from pull by tearing apart from one side. 
3  Fine black pigment powder residues left on the EVA layer. 
4  The glass plate broke on the second strip test. 
 
 Mechanically strong backfoils such as I-TPT and M-
TPE could result in glass-plate breaking, and weak 
backfoils such as TAT (Tedlar/aluminum foil/Tedlar) 
would be torn broken during the tests. The relatively weak 
bonding between the black-pigmented Tedlar with EVA on 
I-TPAT (Tedlar/polyester/aluminum foil/Tedlar) resulted in 
low adhesion because the TPAT backfoil peeled off from 
EVA fairly easily, leaving the black-pigmented Tedlar 
particles on the EVA surface. Teijin 6429 film performed 
similar to a typical TPT laminate [6]. Once the EVA-sided 
Tedlar layer of a TPT or TPE backing foil was peeled off, 
the adhesion strength of the PT or PE layers to the Tedlar 
layer was obtained, which was typically <1 N/mm.  
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3.2.3.  Effects of Glass Type, Surface Cleaning, 
Treatments, and Textures 
 Table 3 shows the effects of glass type, surface texture, 
cleaning method, and priming treatment on EVA adhesion. 
For borosilicate glass plates, cleaning methods by IPA, 
sulfuric chromic acid, 2.0 N NaOH soaking, and Liqui-
Nox,TM followed by no priming or by 2% Z-6030 priming, 
did not appear to make a significant difference in the 
EVA/boro adhesion strengths, which were in the 7 ± ~1 
N/mm range. Similar results were obtained (6~7 N/mm) for 
1/16"-thick soda lime microslide plates. 
 
Table 3.  Effects of Glass Type, Cleaning Method, Surface 
Treatment, and Texture on the Adhesion Strength of Glass/15295P/ 
M-TPT Laminates Using 90-Degree-Pull  
 

Glass  Plate  Cleaning  Surface  Max. Ad.  
Type Size Method Priming Strength 
(1/8" thick) (in.x in.)  (N/mm)
Boro 1 x 3 IPA  6.44
Boro 1 x 3 IPA  Z-6030 6.74
Boro 1 x 3 IPA  PECMA 5.14
Boro 1 x 3 IPA/Chrom Acid  Primer C 6.21 
Boro 1 x 3 Chromic Acid  Z-6030 6.88
Boro 1 x 3 2.0 N NaOH  Z-6030 6.51 
Boro 2 x 3 Liqui-Nox                      8.07,  6.02 
Boro 2 x 3 Liqui-Nox Primer-F 5.59,  5.67
Boro 2 x 3 Liqui-Nox Primer-G 3.74,  5.04
Boro 2 x 3 Liqui-Nox Primer-H 1.05,  0.88
AFG KK 2 x 3 Liqui-Nox   5.54
AFG KK 2 x 3 Liqui-Nox Silq. A187 1.69
AFG KK 2 x 3 Liqui-Nox Primer A 4.64
AFG KK 2 x 3 Liqui-Nox Z-6030 5.54
AFG KK 1 x 3 Liqui-Nox  4.52 
AFG Solatex 1 x 3 Liqui-Nox  4.88  
AFG Solite 1 x 3 Liqui-Nox  4.61 
Starphire 2 x 3 Liqui-Nox  7.00
Solarphire 2 x 3 Liqui-Nox  7.57 
Microslide 1 x 3 IPA                   (1/16"-thick) 6.30   
Microslide 1 x 3 IPA Z-6030 6.92
Microslide 1 x 3 IPA Primer C 5.86 

 
 Surface priming of the borosilicate glass surfaces by 
dipping 2~3 min in custom-formulated solutions (PECMA, 
and Primers-C, F, G, and H), followed by IPA rinsing and 
oven heating at 85oC for ~15 min, could affect strongly the 
EVA adhesion, depending on the primer solution's 
formulation. Therefore, the surface affinity properties for 
EVA, which involve siloxane and hydrogen bonding and 
cross-linking through the Z-6030 silane, appear to be critical. 
Use of additional molecular mathacrylate-type cross-linkers 
in Primer G and H seems to "block" the typical siloxane and 
cross-linking between the glass and EVA. This was also 
observed for the AFG-KK glass that was directly primed 
with a Silquest A-187TM 3-glycidoxypropyltrimethoxysilane, 
whereas priming with Z-6030 or Primer A made no or little 
difference. The test results with AFG's cerium oxide-doped 
glasses–plain Krystal KlearTM, mildly textured Solatex IITM, 
and pyramid-textured SoliteTM–show that the EVA adhesion 
strength appears to be insensitive to the surface texture, 
which is likely a consequence of the soft, semi-elastic EVA 
film as discussed above. EVA adhesion to the PPG's 

StarphireTM and CeOx-doped SolarphireTM was similar to 
the borosilicate glass, but stronger than AFG's soda-lime 
glasses. 
  
3.3.  Weak Adhesion of Fluoropolymer Thin Films 
 Adhesion of three fluoropolymer thin films to EVA 
and/or glass surfaces was also studied. TefzelTM films have 
been used for years as superstrates for thin-film a-Si PV 
modules, and DureflexTM and Dyneon's THV films (both 
based on Dyneon's THV220TM fluorinated terpolymer) 
have been tried recently as super- or substrates or even to 
replace entirely the EVA/Tefzel combination [6]. The 
results indicate all three films bonded weakly to the EVA at 
a level of ~1.3 N/mm for the Tezel and Dureflex, and ~2.6 
N/mm for the 3-mil THV film. The adhesion of Dureflex 
film to a cleaned glass surface was very low at ~0.4 N/mm. 
 
4. Conclusions 
 The extensive adhesion strength study has clearly 
demonstrated that the apparent adhesion strength of 
EVA/backfoil to glass substrates is affected by a number of 
factors, which include EVA type, formulation, backfoil 
type and manufacturing source, glass type, and surface 
priming treatment on the glass surface or on the backfoil. 
The results indicate that the adhesion test is critically 
dependent on the use of a mechanically "strong enough" 
backing foil on the EVA to achieve a meaningful peel test. 
The peel-test method with a 90-degree-pull yielded similar 
results to a 180-degree-pull. Effects of the glass-cleaning 
method and surface texture are not obvious. Fluoropolymer 
thin films show low adhesion to the EVA or glass. Based 
on our results and observations, we conclude that the 
adhesion strengths derived from the peel tests are 
comparative at best. In addition, it is recommended that all 
relevant conditions and materials information be clearly 
specified when an adhesion strength is cited or reported. 
More details will be presented in the Review Meeting.  
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